Electroporation for Transfection and Differentiation of Dental Pulp Stem Cells
نویسندگان
چکیده
Target gene delivery is needed to induce cellular differentiation or a specific therapeutic effect. Electroporation is a relatively safe and simple technique to deliver nucleic acids to the cell that acts by rendering cells transiently permeable using short periods of high voltage. In stem cell research, human dental pulp stem cells (hDPSCS) are highly accessible, and they exhibit broad differentiation potential. Until now, no studies have attempted to optimize electroporation parameters for DPSCs with respect to transfection efficiency and viability. In this study, we aimed to optimize transfection of DPSCs through varying different electroporation parameters, including voltage, mode of pulsation, and the number of pulses. As positive control, we used commonly utilized the chemical transfection reagents Lipofectamine 2000 and FuGene 6. In addition, we used our newly optimized transfection conditions to transfect hDPSCs with a functional chondrogenic transgene. We obtained higher transfection efficiency and cell viability with these electroporation conditions compared to controls. The highest transfection efficiency (63.81±4.72%) was achieved with 100 V, 20 msec, one-pulse square-wave condition. Among chemical transfection groups, FuGene 6 showed the highest cell viability at all tested transfection ratios, while Lipofectamine 2000 showed the highest transfection efficiency (19.23±3.19%) using 1:1 DNA (μg):Lipofectamine (μL). Transfected DPSCs functionally expressed the transforming growth factor β-3 chondrogenic transgene on the mRNA level as detected by real-time polymerase chain reaction and on the protein level as detected by Western blot analysis. An increase in various chondrogenic markers was also found when studying mRNA expression in transfected cells. In conclusion, the results of our study demonstrate optimal electroporation and chemical transfection reagent conditions for hDPSCs, and, subsequently, we provide proof of concept for expression of a functional gene using those conditions. These results demonstrate a widened scope for use of DPSCs in various tissue engineering applications.
منابع مشابه
Isolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملEvaluation of the Effect of Platelet-Rich Plasma on Proliferation and Differentiation of Human Dental Pulp Stem Cells with or without Ga-Al-As Laser
Background Recently, the clinical use of low power lasers has increased, and it is said that wound healing is accelerated by their irradiation. The aim of this study was evaluation of the effect of platelet-rich plasma on proliferation and differentiation of human dental pulp stem cells with or without Ga-Al-As laser. Methods: In this experimental study, human lower third molar dental pulp c...
متن کاملسلولهای بنیادین پالپ دندانهای شیری انسان، تاریخچه و انواع روشهای استخراج سلول
Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation. Material and methods: One of the ...
متن کاملایزولاسیون و شناسایی سلولهای بنیادی مزانشیمی مشتق از بافت پالپ و فولیکول دندان مولر سوم انسان
Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to isolate stem cells from mature human dental pulp and follicle and to determine their mesenchymal nature before differentiation based on the ISCT (International Society for C...
متن کاملThe Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells
Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...
متن کامل